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Some Critical Exponent Inequalities for Percolation 
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For a large class of independent (site or bond, short- or long-range) percolation 
models, we show the following: (1) If the percolation density P~(p) is discon- 
tinuous at Pc, then the critical exponent ,/(defined by the divergence of expected 
cluster size, ZnP,(p)~(p~.-p)-; '  as PTP~) must satisfy 7~>2. (2) 7 or ~,' 
(defined analogously to 7, but as P3. P~.) and 6 [P,~(p~)~n i 1/~ as n--*oo] 
must satisfy 7, 7 '~ > 2(1-  l/6). These inequalities for 7 improve the previously 
known bound 7~>1 (Aizenman and Newman), since ~>2 (Aizenman and 
Barsky). Additionally, result 1 may be useful, in standard d-dimensional per- 
colation, for proving rigorously (in d> 2) that, as expected, P:~ has no discon- 
tinuity at p,. 
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1. INTRODUCTION AND RESULTS 

1.1. Background 

We are concerned- in this p a p e r  with two in te rconnec ted  kinds  of  results for 
percola t ion.  The first involves the re la t ion  between the divergence as p 1" Pc 
of the expected cluster size Z(P) [as  descr ibed  by the exponen t  7: 

Z(P) ~ ( P c -  P) -~ ' ]  and  the vanishing of P~(p~) ,  the pe rco la t ion  densi ty  at 
the cri t ical  point .  The second involves the re la t ion between ,/ or  o ther  
s imilar  exponents  and  the decay  as n ~ oo of  P,(Pc) ,  the cluster  size dis- 
t r ibu t ion  at  the cri t ical  po in t  [as  descr ibed  by the exponen t  3: 
p n ( p ~ . ) ~ n - l  1/~]. 

O u r  results of  the first k ind  m a y  be regarded  from two perspectives.  
Both perspect ives  impl ic i t ly  make  use of the fact, p roved  recent ly by Aizen- 
man  and  Barsky  (1/ to  be genera l ly  valid,  tha t  there is a single crit ical  po in t  
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p,. above which P~  is positive and below which Z is finite. The first 
perspective is from the context of one-dimensional 1~Ix-  yl 2 models, where 
it has been proved that there is a phase transition (with Pc r 1)(17) and that 
P~(Pc) > 0(6): for such models we show that 7 >~ 2. The second perspective 
is from the context of most other models, such as standard site or bond 
percolation in dimension d >  2, where it is expected, but not yet rigorously 
proved, that Po~(P~.)= 0: for such models we show that to derive continuity 
of P ~ ( p )  at p,., it suffices to show that 7 <2.  Note that for d =  3, 7 is 
numerically estimated to be about 1.7 (see, e.g., Ref. 19 and the references 
given there). We also remark that P~  has been proven to be continuous for 
all p > pc .(4'7) 

Our main result of the second kind is that 7 and the analogous (as 
p + p,) exponent 7' satisfy 7, 7 ' ) 2 ( 1  - 1/6). Since 8 >~ 2, (11 this improves the 
previous result Isl that 7 ~> 1. Other rigorous inequalities are known, which 
involve the exponent /3 [ P ~ ( p ) ~ ( p - p c )  ~ as p,Lp,.]: /?--- <1(8) and 
f l (6 -  1)>~ 1. The latter inequality was derived for Ising models in Ref. 13 as 
a consequence of a differential inequality related to Burgers' equation; the 
differential inequality and hence the exponent inequality were extended to 
percolation models in Ref. 1. Some inequalities have also been obtained for 
the "specific heat" exponent e.(4) For standard two-dimensional models, 
there exist nonrigorous but presumably exact values for the critical 
exponents/15'16'~8) as well as rigorous hyperscaling identities among 
exponents.(L m2) 

In the remainder of this section, we describe the class of percolation 
models we consider and then precisely state our results. In Section 2, we 
give the essential ingredients of the proofs. For more details, see Ref. 14. 

1.2. Se tup  

All our results concern independent translation-invariant site or bond 
percolation. For simplicity, the site models we consider will be standard 
nearest neighbor percolation on the hypercubic lattice Z a with site 
occupation probability p. We denote by N >i 0 the size of the cluster of the 
origin, i.e., the number of occupied sites connected to the origin by nearest 
neighbor paths touching only occupied sites. 

The bond models we consider have bonds {x, y } between pairs of sites 
in Z d which are independently occupied with probability p~_y (not equal 
to one). Here N >~ 1 denotes the number of sites connected to the origin by 
paths of occupied bonds. We choose some finite collection of sites 
(invariant under z ~ - z )  and set Pz = P for all z in that collection; for 
every other z, Pz is held fixed as p is varied. The standard nearest neighbor 
bond model, for example, takes the nearest neighbors of the origin as its 
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collection and sets Pz = 0 for every other z. In long-range, one-dimensional 
models, one often assumes P x - y  ~ I x -  Yl -s  for some s > 0 as I x -  Yl --* oo, 
and chooses Pl = P2 . . . .  = PR = P  for some convenient R .  (6A7) 

For  both site and bond percolation, we make the following standard 
definitions of the percolation density Poo, cluster size distribution pn, 
critical point Pc, and expected cluster size )~ (or Z'): 

Pn(p)=Probp(N=n) for n~<oo (1.1) 

Pc = sup{p:  Poo(P) = 0} (1.2) 

Z(p)=Ep(l%l)= ~ nP.(p) (1.3) 

; ( ( p ) =  ~ nP,(p) (1.4) 
n < o o  

We will always assume that 0 < p~. < 1. This requires Z P~ < oo, and either 
that d >  1 or else, for d =  1 bond percolation, essentially that 
lim z2p~ > l. (6'17) 

It has recently been proven (1) that in all these models Z ( p ) <  oo for 
any p < p~. Of course, ;( = )~ for p < p~, but for p > Pc, X = 0% while )( is 
believed to be finite for most models. However, no general theorem guaran- 
tees this belief; indeed, it is known not to be so in some 1/Jx-y] 2 
models.(3) 

1.3. Results 

Our first theorem relates the divergence of ):(p) as pTpc to the 
vanishing or nonvanishing of Poo(Pc), i.e., to whether P~(p) has a discon- 
tinuous transition at Pc. As noted above, such a discontinuity does occur in 
1/Ix-yl 2 models. 16) The theorem is not stated directly in terms of 7 so as 
to avoid any assumptions as to whether, and in what sense, 
)~(P) ~ ( P c - P )  ~ as p T pc- However, any reasonable version of such an 
assumption, combined with the theorem, would yield 

P ~ ( p c )  > 0 implies 7>~2 (1.5) 
or equivalently 

7 < 2  implies P ~ ( p c )  = 0 (1.6) 

The inequality 7 >~ 2 of (1.5) makes its appearance in the statement of the 
theorem in the guise of a divergence criterion [Eq. (1.7)]. If one wishes, 
that criterion can be replaced (at the cost of slightly weakening the 
theorem) by a less disguised version of 7 ~> 2, namely, 

fo rany  e > 0 ,  l i m s u p ( p ~ - p )  ~ ~2:(p)=oo 
pTpc 
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T h e o r e m  1. I f 0 < p c < l  a n d P o o ( p c ) > 0 ,  then 

foc-~ [-z(p)] 1/2 dp = oo (1.7) 

The proof of Theorem 1, which will be presented in Section 2, is quite 
comprehensible and the reader is urged to read it. 

Remarks. (i) In bond models, one often considers a different choice 
of parameter than the p defined above. Namely, one may set 

Pz = 1 - exp( - flJz) 

with free parameter/8 (not to be confused with the critical exponent/~) and 
with all Jz held fixed as /~ is varied. If 0 < f l c < o e  (which requires 
Y~ Jz < oo ), it can be shown that 

f l c  - -  0 

Poo(/~c) > 0 implies [Z(/~)] 1/2 d/? = c~ 

When there are infinitely many nonzero Jz, this does not seem to follow 
from Theorem 1, but it can be proven by similar arguments (see Ref. 14 for 
details). 

(ii) Theorem 1 can be combined with a result from Ref. 5 to give an 
alternate proof of the recently derived fact (2) that P~(Pc)=0 whenever the 
"triangle criterion" is satisfied. The triangle criterion, introduced in Ref. 5 
and expected to be valid in short-range models above six dimensions, states 
that the two:point connectivity function, defined as 

z(x, y) = Probp (x and y belong to the same cluster) 

satisfies 

~ ' c ( O , x )  z(x,y)r(y,O)<oe at P=Pc 
x y 

It was shown in Ref. 5 that when the triangle criterion is satisfied, ~ = 1 [-in 
the sense that )~ is bounded above (and below) by a constant times 
(Pc-P) 1 as pTpc] and hence, by Theorem 1, P ~ ( p c ) = 0 ,  since the 
integral in (1.7) is convergent. Another alternate proof, based on the uni- 
queness of infinite clusters, may be found in Ref. 4; that argument yields 
sufficiency conditions for Poo(pc)=0 that are much weaker than the 
triangle criterion. 
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Our second theorem assumes a one-sided version of P,(p~)~ n ~- ~/~ 
and concludes with a precise version of the inequalities 

7 ) 2 ( 1  - 1/6), 7'/->2(1 - 1/6) (1.8) 

The proof will be given in Section 2. 

T h e o r e m  2. I f 0 < p ~ < l  and if for s o m e 6 > l  a n d B ~ > 0 ,  

P,(p,.)>~Bln (l+1/~) as n ~ o o  (1.9) 

then for s o m e  B 2 > 0 

Z(p~,-e),Z'(p~.+e)>~B2]sZlog(le])t -(1-1/~) as e~0 (1.10) 

Remarks. (i) Let us define for r > 0, 

)~(p)=Ep(N~)= ~ nrP,(p) (1.11) 
n ~ o o  

and Z;(P) analogously. The proof of Theorem2 automatically yields 
inequalities on the corresponding critical exponents: 

7r,'/;>~2(r-1/6) for r>l /6  (1.12) 

Now )~r(P) and X;(P) are (by H61der's inequality) log-convex functions of 
r, so that 7r and 7" (assuming they exist in some reasonable sense) will be 
convex in r. Moreover, if 6 exists in a reasonable sense, then one should 
have 7~/e = 0 = 7'l/~. Convexity would then imply an improvement of (1.12), 

7r, 7'~ ~> 1~71/3 ( r - ~ )  for r > l  (1.13) 

and would also imply 

7r, L ~  < r -  for ~ < r < l  (1.14) 

(ii) The logarithmic factor in (1.10) can be eliminated at the cost of 
mixing together 7 and 7'; e.g., (1.10) can be replaced by 

[Z(p~.--e)Z'(pc+e+O(e2))]l/2>~B3lal -2(1-1/6) as e~0 (1.15) 

This inequality is valid even if the hypothesis (1.9) on Pn(PJ is weakened 
to 

~. e nhnpn(pc)>~B'lhl/a-~ as h ; 0  (1.16) 
n < o o  

See the remarks at the end of Ref. 14, Section 3 for more details. 
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2. D E R I V A T I O N S  

We will present here the derivations only for the case of site per- 
colation. The proofs for bond percolation are essentially the same, but with 
some extra complications. See Ref. 14 for more details. 

Proof of Theorem 1 (for site percolation). We use the standard 
identities 

and 

Po~(P) = 1 -  ~ Pn(P) (2.1) 
t / -<  oo 

Pn(p) = ~ anzp"(1 - p)'=- ~ P.,(p) (2.2) 
l l 

where ant is the number of lattice animals with n occupied sites and 1 vacant 
boundary sites. These imply that 

(d/dp) Pn(P) = ~ [n/p -- l/(1 - p)]  P,,(p) 
l 

(2.3) 

and that 

P ~ ( p , ) =  - lim Y, 
N ~ o o  

n < N  

[P , (Pc)  - Pn(P~.-- e)] 

~ < : N  

n < N  

) 
- [n /p -  l/(1 - p ) ]  P~,(p)~ dp 

1/2 
[nip - / / (1  - p)]2 P,I(P) dp (2.4) 

where the last step uses the Cauchy-Schwarz inequality (for sequences 
indexed by n and l) and the intermediate steps use the fact that 
Z,<N Pn(P) is a smooth function of p (since for each n, only finitely many 
a,l are nonzero) even though Poo(P) is not smooth (at Pc). 

Next we differentiate (2.1) for p < p,. once to obtain 

[n/p--l(1 - - p ) ]  Pro(p) = 0 (2.5) 
l 

n < o o  
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and twice to obtain 

[ n / p - I / ( 1 -  P)]z Pn,(P) = 
I l 

n < zx3 n < e o  

[nip 2 + 1/(1 - p)23 Pnt(P) 

= p  2 ( 1 - p ) - ' 7 ~ ( p )  (2.6) 

where the last equality uses (2.5). There are no convergence problems 
in (2.5)-(2.6) because for p<p, . ,  P,  decays exponentially fast in n. ~ 
Combining (2.6) with (2.4) yields 

P~(p,.)<~ [ p - ~ ( l - p )  ~Z(p)]t/adp (2.7) 

Letting e---,0 shows that if [Z(p)] 1/2 has a finite integral over (0, p,), then 
P~(p, . )=O, which completes the proof. | 

Before giving the precise proof of Theorem 2 (for site percolation), we 
sketch the basic ideas behind it. These have about  them the general flavor 
of standard scaling theory (see, e.g., Ref. 19), except that (asymptotic) iden- 
tities are replaced by (asymptotic) inequalities, inequalities that should 
only be saturated above the upper critical dimension. 

The exponent 3 may be defined either by Pn(P,.)~ n (~ + ~/~) or by 

11 

Now the lattice animal representation (2.2) imples 

where 

so that 

4 ' . , (~ )  = (1 - e / p , ) " [ 1  + ~/(1 - p c ) ] '  

as h+0 (2.8) 

( 2 . 9 )  

(2.10) 

Z(P,.- ~) = ~ n(~.t(e) Pn,(Pc) (2.11) 
n , [  

The identity (2.6), which is valid for p < p,., suggests that when p = p,,  
[ n / p , . - l ( 1 -  p,.)] is "typically" O(n 1/2) as n--* oc. In this typical region of 
(n, l) values, l~> (1 - p,.)n/pc- O(n ~/2) and 

~nl(e)>~(1 -e/p,.)n[1 +e/ ( l  - p c ) ]  ~ P")"/P'-~ (2.12) 
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If we expand the logarithm of the RHS of (2.12) in e for small e and use 
(2.11), we find 

Z(Pc - c) >~ ~ ne -~ + n~2~ P,,(Pc) (2.13) 
n 

Since nl/2~ (1 +n~2)/2, this last inequality and the definition (2.8) of 6 
together show that 

which implies 7 >~ 2(1 - 1/6). Similar arguments lead to 7 ' ) 2 ( 1  - 1/6). 
The major change made below to turn the above discussion into a 

legitimate proof is that [n /p - l / (1 -p ) ]  is only shown to be 
O[(n log n) ~/2] rather than O(nm). This leads to the logarithm in the con- 
clusion (1.10) of the theorem. 

Proof of Theorem 2 ([or site percolation). We give the proof of 
(1.10) for )~(pc-e); the proof for )~'(p~+e) is essentially the same. For 
some K2 in (0, oo), whose value will be implicitly determined below, we 
define 

Eo-- Z 
l : l n /p , -  I/(1 -P,.)I  ~< K2(n l o g  n )1 /2 / (  1 - -  Pc )  

~b to be the complementary sum, and 

O(n, a) = (1 -- e/pc)~[1 + e/(1 -- pc)] (1 -p,.),,/pc K2(n logn)  1'2 

Then the lattice animal identities (2.9)-(2.10) imply 

P,,(p,.-e)>~ ~ t~,,(e) P,,(P,.)>~O(n,e) [P,(Pc)-  ~b P,z(Pc)] (2.14) 

It is known (Ref. 10, Lemma 5.1) (see also Ref. 4) that for any Kl < o% 
K2 can be chosen large enough so that for any given p (e.g., p =Pc) 

Eb P,'(P)= O(n K~) as n - -  oo (2.15) 

This allows us to convert (2.14) to 

Z(pc-- e) >~ ~ r e) nPn(pc)- ~ O(n, e)n -(K'- I~ (2.16) 
n n 

It is not hard to show that O(n, e) ~< 1 (even with K2 = 0), so that for 
K1 > 2, 

X ( p c - a ) > ~ ( n , e ) n P , ( p c ) - O ( 1 )  as ~{0 (2.17) 
n 
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Expanding log[-~(n, ~)] in ~ leads to the bound (for small e) 

O(n, e) ~> exp[ - K3e2n - K4e(n log n) 1/2] 

for some K3 and K4. We then insert the basic hypothesis (1.9) about P,(p,:) 
into (2.17) and estimate the sum on the RHS by 

I ( e ) -  duu-1/~ e x p [ - K 3 e 2 u -  K4e(ulog u)l/2] (2.18) 

By the change of variables v=  e2llog(Iel)J u, one finds that 

fo o le21og(l~l)ll-1/~ ---, dvv 1/~exp[-K4(2v)l/2] as e,L0 

which yields the desired asymptotic lower bound on X(Pc-~). | 
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